Gene regulation and common diseases and traits

John A. Stamatoyannopoulos, M.D. Depts. of Genome Sciences & Medicine University of Washington

The living genome

The living genome

DNasel hypersensitive sites (DHSs) mark regulatory DNA

~100,000 - 250,000 DHSs per cell type (0.5-1.5% of genome)

The living genome

Surveying the regulatory DNA landscape

Adult cells and tissues

Surveying the regulatory DNA landscape

Developing cells and tissues

An available atlas of human regulatory DNA

Actuation of regulatory DNA is highly cell-selective

Regulatory regions are highly cell- and lineage-selective

Regulatory regions are highly cell- and lineage-selective

Regulatory DNA and genes are highly interconnected

The living genome

The living genome

The living genome is fundamentally non-linear

Genomic distance ≠ actual distance

Regulatory DNA and genes are densely interconnected in cis

The average enhancer is connected to 1-2 genes

The average gene (promoter) is connected to 15-20 enhancers

Developmentally persistent accessibility at regulatory DNA provides 'memory' of prior cell states

Developmental persistence of enhancer accessibility

Regulatory DNA variation associated with common diseases and traits

All genetic variation is interpreted in an epigenetic context

Identification of disease- and trait-associated variation by GWAS

GWAS Studies

Distribution of GWAS SNPs vs. genes

Identification of disease- and trait-associated variation by GWAS

Distribution of GWAS SNPs vs. genes

GWAS disease/trait associated variants

x
Maps of regulatory DNA in >300 diverse cell and tissue types

Disease-associated variation is concentrated in regulatory DNA

Disease- and trait-associated SNPs are concentrated in regulatory DNA

The effect increases monotonically with other measures of higher quality associations

Disease- and trait-associated SNPs are concentrated in regulatory DNA

~1.8-fold for all replicated variants in all disorders

>10-fold for specific disese-cell type pairings

GWAS variants selectively localize in regulatory DNA of pathologically relevant cell types

Disease-associated variation clusters in pathogenic or target cell types

Cell-selective enrichment of trait-associated variants

Variants associated with diseases and traits with developmental contributions preferentially localize in fetal regulatory DNA

Surveying the normal epigenomic landscape

Developing cells and tissues

Most variants lie in regulatory DNA of fetal origin

Fetal regulatory variants are enriched in traits & diseases with known links to intrauterine exposures

Correcting genetic associations for epigenetic circuitry

Regulatory DNA harboring disease-associated variants mainly controls distant genes

The epigenome and genes are densely interconnected in cis

The average enhancer is connected to 1-2 genes
The average gene (promoter) is connected to 15-20 enhancers

Regulatory GWAS variants linked to distant genes with causative potential

Regulatory GWAS variants linked to distant genes with causative potential

Regulatory GWAS variants linked to distant genes with causative potential

Regulatory GWAS variants linked to distant genes with pathogenic potential

Disease or trait	r	Target gene	Function	Distance (kb)
Amyotrophic lateral sclerosis	1	SYNGAP1*	Axon formation; component of NMDA complex	411
Crohn's disease	1	TRIB1*	NF-xB regulation	95
Time to first primary tooth	0.99	PRDM1*	Craniofacial development	452
C-reactive protein	0.99	NLRP3	Response to bacterial pathogens	20
Multiple sclerosis	0.98	AHI1*	White matter abnormalities	149
QRS duration	0.96	SCN10A*	Sodium channel involved in cardiac conduction	181
Breast cancer	0.96	TACC2*	Tumor suppressor	411
Schizophrenia/brain imaging	0.95	KIF1A*	Neuron-specific kinesin involved in axonal transport	428
Brain structure	0.94	CXCR6*	Chemokine receptor involved in glial migration	357
Rheumatoid arthritis	0.94	CTSB*	Cysteine proteinase linked to articular erosion	359
Ovarian cancer	0.93	HSPG2*	Ovarian tumor suppressor	268
Multiple sclerosis	0.93	ZP1*	Known autoantigen	153
ADHD	0.93	PDLIM5*	Neuronal calcium signaling	328
Breast cancer	0.88	MAP3K1*	Response to growth factors	158
Amyotrophic lateral sclerosis	0.88	CNTN4	Neuronal cell adhesion	306
Schizophrenia	0.81	FXR1*	Cognitive function	120
Type 1 diabetes	0.75	ACAD10*	Mitochondrial oxidation of fatty acids	343
Lupus	0.74	STAT4	Mediates IL-12 immune response and T _H 1 differentiation	113

Disease-associated variants selectively localize to relevant transcription factor recognition sites

Within regulatory DNA, disease-associated variants systematically localize within relevant TF recognition sites

DNasel hypersensitive sites mark regulatory DNA

Disease/trait variants specify allelic chromatin states

Overall, 20.5% of GWAS SNPs exhibit significant allelic imbalance

For those with high sequencing depth (>200x), 38.7%

Disease-associated variants cluster in regulatory pathways and form regulatory networks

~25% of inflammatory disease-associated variants in regulatory DNA perturb the JAK/STAT pathway

A common regulatory network for autoimmune disease

A common regulatory network underlies diverse malignancies

Regulatory DNA maps enable pinpointing of disease/trait-relevant cell types

Cell-selective enrichment of trait-associated variants

Selective enrichment of GWAS variants in pathogenic cell types

Selective enrichment of GWAS variants in pathogenic cell types

Perspective: Genes vs. 'causal variants'

Many ways to break the clock

Functional regulatory vs. coding/splicing mutations

Why should we expect anything different?

CF mutations in exons

Acknowledgements

Key experiments/analyses

Matthew Maurano, Shane Neph, Jeff Vierstra Tony Raubitschek, Andrew Stergachis,

Eric Haugen, Richard Sandstrom, Eric Rynes Rich Humbert, Bob Thurman, Alex Reynolds

Epigenome Center

Raj Kaul, Scott Hansen, Peter Sabo, Molly Weaver, Theresa Cantwell, Kristin Lee, Shinny Vong, Vaughan Roach, Erica Gist, Sandra Stehling-Sun

Collaborators

Steve Ziegler (Benaroya Inst.)
Shelly Heimfeld (FHCRC)
Nona Sotoodehnia (UW Cardiology)
Chris Cotsapas (Yale)
Shamil Sunyaev (Harvard/Brigham)

Funding: NHGRI (ENCODE)

NIH Common Fund (Roadmap Epigenomics)